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Abstract

In the string prefiz-malching problem one is interested in finding the longest
prefix of a pattern string of length m that occurs starting at each position of a text
string of length n. This is a natural generalization of the string matching problem
where only occurrences of the whole pattern are sought. The Knuth-Morris-Pratt
string matching algorithm can be easily adapted to solve the string prefix-matching
problem without making additional comparisons.

In this paper we study the exact complexity of the string prefix-matching prob-
lem in the deterministic sequential comparison model. Our bounds do not account
for comparisons made in a pattern preprocessing step. The following results are
presented:

1. A family of linear-time string prefix-matching algorithms that make at most

2m—1 o
povy TLJ comparisons.

2. A tight lower bound of [2”:71‘171] comparisons for any string prefix-matching
algorithm.

We also consider the special case when the pattern and the text strings are
the same string and all coinparisons are accounted. This problem, which we call
the string self-prefiz problein, is similar to the failure function that is computed in
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the pattern preprocessing of the Knuth-Morris-Pratt string matching algorithm aund
used in several other comparison ellicient algorithms. By using the lower bound for
the string prefix-matching problem we are able to show:

3. A lower bound of 2m — [2y/m] comparisons for the self-prefix problem.

1 Introduction

In the string prefiz-matching problem one is interested in finding the longest prefix of a
pattern string P[1..m] that starts al each position of a text string 7[1..n]. More formally,
the required output of the string prefix-matching problen is an integer array II[1..n] such
that for each text position i, 7 [¢..c +II[z] — 1] = P[L..11[¢}] and if II[{] < m and 4+ 1] < =,
then T[i + II[]] # P[IL[7] + 1].

The string prefix-matching problem is a natural generalization of the standard string
matching problem where only complete occurrences of the pattern are sought. The clas-
sical linear time string matching algorithm of Knuth, Morris and Pratt [9] can be easily
adapted to solve the string prefix-matching problem in the same time bounds without
making additional comparisons. We assume that the reader is familiar with this algo-
rithm. (Since complete occurrences of the pattern cannot start at text positions larger
than n—m+1, the string matching algorithm can stop before reaching the end of the text.
The prefix-matching algorithm must continue until the end of the text and therefore, it
may make at most m extra comparisons.)

In this paper we study the exact number of comparisons performed by algorithms that
have access to the input strings by pairwise symbol comparisons that test for equality.
This work was motivated by recent results on the exact comparison complexity of the
string matching problem [4, 6, 7, 8, 10]: Colussi [6] optimized the Knuth-Morris-Pratt
[9] string matching algorithm, which makes 2n — m comparisons, using program correct-
ness proof techniques and presented an algorithm that makes n + %(n — m) comparisons.
His algorithm was later improved by Galil and Giancarlo [8] and further by Breslauer
and Galil [4]. Recently, Cole and Hariharan (5] discovered an algorithm that makes only
n+ £(n —m) comparisons, but requires an expensive pattern preprocessing. (All bounds
for the string matching algorithins mentioned do not account for the comparisons made
in a pattern preprocessing step. The pattern preprocessing step of Cole and Hariharan’s
algorithm takes O(m?) time, while the other algorithms use the Knuth-Morris-Pratt pat-
tern preprocessing step that takes linear time.) Cole and Hariharan [5] also imiproved the
lower bounds given by Galil and Giancarlo [7] and Zwick and Paterson [10]. There is still
a small gap between the lower and upper bounds for string matching.

The string prefix-matching problem is obviously harder than the standard string
matching problem since cach text symbol must be either compared directly to the first
symbol of the pattern or compared successfully to another symbol, while in the string
matching problem some text symbols might not be compared at all, as shown by Boyer
and Moore [2]. Interestingly, this “hardness” introduces more structure that makes the
analysis of the string prefix-matching problem easier.

This papér presents matching lower and upper bounds [or the string prefix matching
problem. In particular we give:
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1. A family of linear-time string prefix-matching algorithms that make at most | 22=1n |

comparisons. The pattern preprocessing step of these algorithms is almost identical
to that of the string matching algorithm of Knuth, Morris and Pratt [9].

This bound improves on the 2n—1 comparisons made by the adapted string matching
algorithm of Knuth, Morris and Pratt [9].

2. A tight lower bound of |22=Ln| comparisons for any string prefix-matching algo-
rithm.

These results show that although the string matching and the string prefix-matching
problems are closely related, their exact comparison complexities are inherently different:

e When m — oo and n » m the comparison complexity of the string matching
problem approaches n while the comparison complexity of the string prefix-matching
problem approaches 2n.

o The lower bound proofs of the two problems require different arguments: the patiern
string that we usc for the lower bound is ‘ab™~ !> while the lower bounds for the
string matching problem require patterns with more complex periodicity structures

(5, 7, 10].

Finally, we consider the special case when the text and the pattern strings are the same
string and all comparisons are accounted. This problem, which we call the string self-prefiz
problem, is similar to the failure function that is computed in the pattern preprocessing of
the Knuth-Morris-Pratt [9] string matching algorithm using 2m — 4 comparisons. (These
are essentially different representations of the same information: one can be computed
from the other in linear time without additional comparisons. Therefore, the lower bound
applies also to the computation of the failure function.) The failure function is also used in
several other string matching algorithms [4, 6, 8] and in the family of algorithms discusses
in this paper. We prove:

3. A lower bound of 2m — [2\/m] comparisons for the sclf-prefix problem.

This paper is organized as follows. Section 2 describes the family of string prefix-
matching algorithms and Section 3 gives the matching lower bound. Section 4 uses this
lower bound to prove a lower bound on the self-prefix problem.

2 Upper Bounds

In this section we present a family of string prefix-matching algorithms that make at most
|22=1n| comparisons. The discussion below is in the comparison model where we count
only comparisons and all other computation is free. We assume that the algorithms have
obtained complete information about the pattern in an unaccounted pattern preprocessing
step which may compare even all (’;‘) pairs of pattern symbols. We further assume that
the algorithms do not make any comparisons that are implied by the answers to previous
comparisons. The algorithms presented can be implemented efficiently in the standard
random access machine model [1].
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Definition 2.1 We say lhal « prefix-malching algorithn is on-line if before comparing
the texl symbol T[(] il has delermined if lhe pallern prefizes that starl at texl posilions |
terminate before texl posilion ¢ for all text positions |, such that | < (.

Let ¥¢ = {4 —m < P< S < < 1/’( = (} be the set of all text positions
for which 11[1¢] can not be determined without examining T[¢]. That is, T[¢¢..¢ — 1] =
P[1..¢ — ¥¢] and T[¢] must be compared to check whether TI[p¢] = ¢ — %¢ or H[zb(] >
¢—¢¢ In this terminology, an on-line prefix-matching algorithm must determine whether
T[¢) = P[¢ — 9¢ + 1], for all ¢ € W€, belore examining any text position larger than (.
Note that ¥+ C WU {¢ +1}.

Comparison efficient on-line prefix-matching algorithms are somewhat restricted with
the choices of comparisons they can make. It is easy to see that they gain no advantage
by comparing pairs of text symbols. Furthermore, all comparisons at text position ¢ must
be between 7[¢] and some P[{ — ¢ + 1] or otherwise can be answered by an adversary as
unequal without giving the algorithm any useful information, provided that the alphabet
is large enough. In the rest of this section we consider on-line algorithms that compare
T¢] to P[¢ — 4¢ + 1], for some ¢ € ¥¢. The only diflerence between these algorithms
is the order in which the pattern symbols P[¢ — ¢¢ + 1] are compared to T[¢]. These
algorithms continue comparing T[¢] until T[¢] = P[¢ — ¢¢ + 1] for some 3¢, or until
T[¢) # P[¢ — ¢ +1] for all ¢, and only then move to the next text position. Note that
by the assumption that the algorithms do not to make comparisons which are implied
by answers to previous comparisons, and since the algorithms have complete information
about the pattern, not all the symbols P[( — ¢¢ + 1] have to be compared:

1. I P — ¢ +1] = T¢], then P[¢ — 1§ + 1] = T[(], for some ¢§ € W&, if and only if
Pl — ¢ + 1] = P[¢ — ¢§ + 1]. In this case a comparison model algorithm “knows”
which symbol is at text position ¢ and it moves Lo the next text position.

2. U P[( -9t +1] # T[C] then P[¢ — o§ + 1] # T[¢], for all ¥§ € W&, such that
Pl¢ = 9f + 1] = P[¢ = 4§ + 1]. Ideally, 2 comparison model algorithm should not
compare the text symbol T [(] to P[{— 11’6 +1]. However, this is not essential for the
proofs in this paper as long as the algorithms do not compare some P[( — ¢ + 1]
more than once.

This leads to the definition of a family F of all on-line coinparison model string prefix-
matching algorithms that may compare T[(] only to some P[{ — ¢¢ + 1]. The data
structures that are used by Breslauer and Galil [4] to implement a family of similar string
matching algorithms can be used to implement all algorithms A € F in linear time with
a paltern preprocessing step that relies on the Knuth-Morris-Pratt failure function.

Theorem 2.2 Let A € F. Then, except possibly the rule which chooses the order accord-
ing to which the P[(—¢¢+1]’s are compared to T[(], A can be implemented in the standard
model in linear time with the Knuth-Morris-Pratl linear time pattern preprocessing step
that makes at most 2m — 4 comparisons.

The algogithms in the family JF are comparison efficient as we show next:
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Lemma 2.3 Let A€ F. Then A makes al most 2n — 1 comparisons.

Proof: It is obvious that A does not need to make more than n comparisons which result
in equal answers. In every comparison which results in unequal answer A determines that
at least one prefix of the pattern which starts at some text position ¥¢ terminates at text
position . Therefore, A does not make more than n comparisons which result in unequal
answers. However, if all pattern prefixes that start at text positions in W¢ terminate at
text position (, then A moves to the next text position without a comparison that is
answered as equal.

Consider the last text position ¢ = n. It is clear that if all comparisons at this text
position result in unequal answers, then A got at most n — 1 equal answers. On the other
hand, if a comparison was answered as equal, then there is at least one pattern prefix
which starts at some text position %¢ and was nol terminated by an inequality answer
and, thus, A got at most n — 1 uncqual answers. Therefore, A makes at most 2n — 1
comparisons. O

The adapted Knuth-Morris-Pratt [9] prefix-matching algorithm is in the family F.
There are cases in which it would actually make 2n — 1 comparisons; e.g. P[1..2] = ‘ad’
and 7T[l..n] = ‘a™. Note that this algorithm compares T[(] to P[( — ¥¢ + 1] in an
increasing order of ¥¢. This order is the worst possible order as we show in the next
theorem.

Define a family of algorithins Fof all A€ F that compare ’P[C ¥+ 1] only last.
Naumely, if an algorithm A € F, then A compares T[¢] to P[¢— ¥+ 1] only if an unequal
answer implies that all pattern preflixes that start at text positions in ¥¢ terminate at
text position ¢. Note that if P[¢ ~ ¢ + 1] = P[¢ — ¢ + 1], for ¢ # ¢S, then A may

compare this pattern symbol at any time.

Theorem 2.4 Lel A€ F. Then A makes at mos! [2":""71J comparisons.

Proof: As in Lemma 2.3, every comparison between T [{] to P[{ ~ ¢ + 1] which results
in an unequal answer determines that the pattern prefix which starts at text position
¥¢ terminates at text position (. We charge such a comparison to text position ¥¢ and
charge comparisons that result in equal answers to the text position compared. Using this
charging scheme it is obvious that each text position can be charged with at most two
comparisons and that comparisons to 7'[{] cannot be charged Lo any text position that is
smaller than ¢,

When A reaches text position ¢, the number of comparisons that are charged to the
text positions 95, -+, — 1 is at most 2(¢ —4¢) — (|¥¢| — 1). This is so since each of these
¢ — 9% text positions has a comparison that resulted in equal answer charged to it, but
at least [¥¢] — 1 of the text positions do not have a comparison that resulted in unequal
answer charged to them.

We prove by induction that the number of comparisons charged to text positions
smaller than ¥¢ is at most |_2'""1 Y — 1)]. This is obviously true at the beginning when
¢ = 1. The only conccrn is when A advances from ¢ to ¢ + 1 and ¢v( < zﬁ(“.

Let { = 11:“'1 —¢r The number of comparisons that were charged to the text positions
Wi, -, 8t — 1 s at most 2{ — 1 since either at most [ text positions were char ged with
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comparisons that resulted in equal answers and $¢ was not charged with an unequal

auswer, or 1% was charged with an unequal answer but then P = ¢+ 1 and text
position ¢ was not charged with an equal answer. But [ < m and by simple arithmetic,
2m —1 2m —1

L

When A reaches text position ¢ = n + 1, the number of comparisons satisfies,

2m — 1 2m —1

l.

(= 1)+ @ = 1) < |[=—— @ - 1)

m

(W~ D) +2¢ - ) = (¥ - 1) < | nj. ©

m

3 Lower Bounds

In this section we show a lower bound on the number of comparisons required by any
string prefix-matching algorithm which may have an unaccounted pattern preprocessing
step. We describe an adversary that can force such an algorithm to make at least | 22=1y|
comparisous.

Theorem 3.1 Any prefie-matching algorithm must make al least | 22=1n| comparisons.

m

Proof: Fix the pattern to P[l.m] = ‘ab™ !’ and assume that the text alphabet has at
least three symbols. We show that an adversary can answer comparisons made by any
prefix-matching algorithm in a way that if the algorithm claims to have computed I[1..n]
in less than [#2=1n| comparisons, then it can be fooled.

Consider first algorithms that cannot compare pairs of text symbols. The adversary
will maintain each text symbol in one of three states: unknown, potential ‘a’ or 0’ and
fized ‘a’ or D’

Initially the adversary sets all text symbols at positions I, such that { = 1 mod m, to
be potential ‘a’s and all other text symbols to be unknown. A comparison between an
unknown text symbol to ‘@’ or to ‘b’ is answered as unequal and the text symbol is set to
be a potential ‘b’ or ‘a’, respectively. A potential ‘a’ or ‘0 is revealed to the algorithm at
the cost of one comparison after which it becomes fixed.

If an algorithm claims it has computed II[1..n] before all lext symbols are fixed, the
adversary has the freedom of setling one of the unknown or polential symbols to an
alphabet symbol other than ‘¢’ and ‘0’. Let u be a text position that is not fixed and
assume that all other text symbols become fixed. If T'[u] is a potential ‘b’, then there
exists v such that u—m < v < w and T[v..u—1] = ‘@b*~""1", and the adversary can alter
I[v] by fixing Tu] to ‘b’ or ‘c’. Similarly, the adversary can alter I1[u] if T[u] is unknown
or a potential ‘a’. Thus, any algorithm must make two comparisons at each text position
excepl at the text positions that are set initially to be potential ‘a’s, where it has to make
only one comparison. The total number of comparisons is at least |22=Ln|.

When pairwise comparisons of text symbols are permitted, the lower bound arguments
are slightly more complicated. To keep track of the comparisons the adversary maintains
a graph with 742 vertices that correspond Lo the n text symbols and the pattern symbols
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‘a’ and ‘b’. The edges of the graph correspond to comparisons and are labeled with their
outcome (“equal” or “unequal”).

The adversary maintains a two-level representation of the edges. This representation
satisfies the following invariants:

1. A subgraph that contains the cdges that arc labeled “unequal” and all vertices.

We refer to the connecled components in this subgraph as components. The adver-
sary will maintain the property that components are bipartite graphs.

2. A subgraph that contains the edges that are labeled “equal” and all vertices.

We refer to the connected components in this subgraph as super-verlices. By transi-
tivity, all vertices in a super-vertex correspond to equal symbols. The adversary will
maintain the property that vertices which are in the same super-vertex are always
in the same side of a single component.

Initially, the graph has 14 [2] edges: between the pattern symbol ‘e’ and the pattern
symbol ‘0’ and between the pattern symbol ‘0’ and every text position [, such that ! =
1 mod m. These edges are labeled “unequal”; the invariants are clearly satisfied. The
adversary answers comparisons as [ollows:

e A comparison between symbols which correspond to vertices that belong to different
components is answered as unequal.

The two components are merged into a single component which is still bipartite.

e A comparison between symbols which correspond to vertices that belong to the
same component is answered as equal if and only if the two vertices are on the same
side of the component.

This may cause two super-vertices to be merged into one. Note that comparisons
between vertices that belong Lo the same component but are on different sides
and comparisons between two vertices in the same super-vertex do not contribute
anything to the component or super-vertex structure and are practically answered
for frec.

The invariants are obviously maintained after each comparison is answered. Note that
vertices which are in the samne super-vertex as one of the pattern symbols correspond to
fixed symbols; vertices which are in the same component as the pattern symbols corre-
spond to potential symbols and vertices which are in other components correspond to
unknown symbols.

A prefix-matching algorithm can terminate correctly when there is only one component
and two super-vertices. Since every connected component with ! vertices must have at
least [ — 1 edges, there are at least n + 1 edges labeled “unequal” and at least n edges
labeled “equal” at termination. Thus, the total number of comparisons is at least 2n +
- (1+[2]) = |2==tn]. O

m
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4 Lower Bounds for the Self-Prefix Problem

In this section we consider the special case where the pattern and the text strings are the
same string and all comparisons are accounted. This problem is solved in the preprocessing
step of the Knuth-Morris-Pratt [9] string matching algorithm in linear time and 2m — 4
comparisons.

Theorem 4.1 Fiz a positive integer constant k. Then, any self-prefiz algorithm that is
given an inpul string of length m, such that m > k, must make at least [2—’1?—11n_| -k
comparisons.

Proof: The adversary fixes the first k symbols of the string to ‘ab*~!’ and reveals them
to the algorithm for k — 1 comparisons. By Theorem 3.1 the algorithm must make at
least |#=1(m — k)| more comparisons. But, |#=2(m — k)] + k— 1 = |2=lm| — k. O
If the length of the input string is known to the adversary in advance, it can maximize
the lower bound as the next corollary shows. In the on-line case, where the string is given
a symbol at a time and its length not known in advance, there seems to be a tradeoff
between maximizing the number of comparisons in the short term and in the long term.

Corollary 4.2 The lower bound in Theorem 4.1 has a mazimal value of 2m — [2/m].
Proof: It is easy to verify that the maximum is achieved for k = |/m] and also for
= [Vl O

5 Concluding Remarks

The lower and upper bounds presented in this paper are shown to be tight only for the
pattern string ‘ab™ !". Recently, we have been able to obtain bounds that depend on the
given pattern string [3].
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